RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, FEBRUARY 2022 THIRD YEAR [BATCH 2019-22]

MICROBIOLOGY (HONOURS)

Time: 11 am – 1 pm PAPER: XII [CC12] Full Marks: 50

Question No 1 is compulsory.

Date: 28/02/2022

1. Answer the following Questions:

 $[10\times1]$

- a) Name two organic solvents used for disruption of cells.
- b) Name the chromatographic technique used for the purification of proteins.
- c) Write down the advantages of using microbes over other sources of enzymes for immobilization.
- d) Write two disadvantages of enzyme immobilization.
- e) What is "gasohol'?
- f) Differentiate between Vitamin B12 and pseudovitamin
- g) What is 'corn steep liquor'?
- h) What are enriched media?
- i) What are secondary metabolites?
- j) What is lyophelization?

Answer **any four** questions of the following:

 $[4\times10]$

- 2. a) write down the different stages of downstream processing?
 - b) What are the physical methods of cell disruption?
 - c) In what way filtration and centrifugation help in the process of downstream processing? [3+3+(2+2)]
- 3. a) what is an immobilized enzyme? How does it differ from immobilized cells?
 - b) Name the most frequently used cross linking agent for Enzyme immobilization.
 - c) Write down the applications of immobilized enzyme in industrial production and food industry.
 - d) Explain the methods of covalent bonding of immobilization with advantages and disadvantages.

[(1.5+1.5)+2+2+3]

- 4. a) Write down the effect of Immobilization on Properties of enzymes.
 - b) What should be the criteria to be ideal carrier matrices for enzyme immobilization?
 - c) 'An immobilized glucose isomerase which is active and stable in concentrated glucose solution has been developed'-explain. (3+3+4)
- 5. a) 'Upstream and downstream processing are integral parts of an overall industrial process'-explain.
 - b) Write short notes on: enzymatic methods of cell disruption for release of intracellular products.
 - c) In what way formulation of product can be done explain.

(3+3+4)

		i)	producer organism	
		ii)	raw material	
		iii)	temperature	
		iv)	pH and	
		v)	product separation and purification.	
		Exp	plain the measures taken under each factor to maximize product formation. (2×5)	
7.	a)	Wr	ite the following with respect to lysine production:	
		i)	Strain used	
		ii)	Media formulation	
		iii)	Fermentation conditions	
		iv)	Recovery	
	b)	Exp	plain why:	
		i)	Control of biotin level is very important for large scale production of L-lysine.	
		ii)	Aeration and agitation cause problem in alpha amylase production. $[(1.5\times4)+(2\times2)]$	
8.	stra	Briefly describe the industrial production of ethyl alcohol (steps to be discussed: choice of producer strain, formulation of medium taking economic consideration, recovery of product and disposal of wastes generated). (2+4+4)		
9.	a)	Exp	plain the gradient plate techniques for selection of analogue resistant mutant.	
	b)		w does crowded plate techniques is useful for primary selection process of industrially portant microbes? (5+5)	
10.	a)	Exp	plain the process of Random Mutagenesis with Degenerate Oligonucleotide Primers.	
	b)		ntion the activity of dUTPase (dut) and uracil N-glycosylase (ung) in oligo nucleotide ected mutagenesis with M13 DNA.	
	c)	Wh	at is error prone PCR? [5+3+2]	
			×	

The industrial production of alpha amylase requires stringent control of

6.